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M. A. Páez-Jaime4, D. Mayorca-Torres5, K. L. Ponce-Guevara6,

J. A. Salazar-Castro7, and D. H. Peluffo-Ordóñez1,4
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Abstract. Time-varying data characterization and classification is a
field of great interest in both scientific and technology communities.
There exists a wide range of applications and challenging open issues
such as: automatic motion segmentation, moving-object tracking, and
movement forecasting, among others. In this paper, we study the use of
the so-called kernel spectral clustering (KSC) approach to capture the
dynamic behavior of frames - representing rotating objects - by means
of kernel functions and feature relevance values. On the basis of pre-
vious research works, we formally derive a here-called tracking vector
able to unveil sequential behavior patterns. As a remarkable outcome,
we alternatively introduce an encoded version of the tracking vector by
converting into decimal numbers the resulting clustering indicators. To
evaluate our approach, we test the studied KSC-based tracking over a
rotating object from the COIL 20 database. Preliminary results produce
clear evidence about the relationship between the clustering indicators
and the starting/ending time instance of a specific dynamic sequence.

Keywords: Kernels · Motion tracking · Spectral clustering

1 Introduction

Today, the analysis of dynamic (also known as time-varying) data is a great-of-
interest and highly-relevant topic within areas such as: data science, automation

O. Oña-Rocha—This work is supported by SDAS Research Group (www.sdas-group.
com).

c© Springer Nature Switzerland AG 2019
V. R. Cota et al. (Eds.): LAWCN 2019, CCIS 1068, pp. 30–40, 2019.
https://doi.org/10.1007/978-3-030-36636-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36636-0_3&domain=pdf
www.sdas-group.com
www.sdas-group.com
https://doi.org/10.1007/978-3-030-36636-0_3


Kernel-Spectral-Clustering-Driven Motion Segmentation 31

and pattern recognition - benefiting then several scientific and technology fields.
Among its remarkable applications, it is worth mentioning: motion segmentation
[1], video analysis [2], and object tracking [3]. In this connection, the theoretical
approaches that have shown to be a significant tool for dealing with dynamic
data are the matrix spectral techniques along with graph-cut approaches. Specif-
ically, the so-called kernel spectral clustering (KSC), introduced in [4], is a well-
reputed state-of-the-art method. KSC - broadly speaking - is a generalization
of a weighted, kernelized version of principal component analysis within a non-
supervised, least-squares-support-vector-machines framework. Furthermore, in a
previous work [5], we demonstrated the usefulness of KSC - powered by a feature
relevance analysis [6] - for dealing with time-varying data problems. Particularly,
the segmentation of a sequence of moving level curves into motion clusters was
studied.

In this work, from such previous studies, we explore the use of the KSC-
based tracking approach to segment into meaningful motion stages a sequence
of frames describing rotating objects. A noticeable contribution of this work is
the possibility to validate an afore-introduced approach for estimating a tracking
vector, by means of an encoded version thereof. Such an encoding procedure is
carried out so that clustering indicators matrix is converted into a vector holding
decimal numbers, and therefore the clustering membership is truly unveiled.
Experiments are carried out over a sequence of frames of a rotating object from
the COIL 20 [7]. Clustering parameters, such as the number of clusters, type
of kernel function, and kernel parameters are empirically set. Obtained results
proves that the explored tracking vector is able to automatically identify motion
stages in a sequence of frames (video) of of objects submitted to a rotational
movement.

The remaining of this paper is structured as follows: Sect. 2 briefly outlines
the KSC formulation and its general use for unsupervised grouping. Then, in
Sect. 3, both the already-developed KSC-based tracking and the novel encoded
tracking vector are explained. Sections 4 and 5 holds the experimental setup and
results, respectively. Finally, in Sect. 6 the concluding remarks are drawn.

2 Kernel Spectral Clustering

Spectral clustering techniques have successfully been used for separating a
dataset into a K disjoint subsets [8]. The Kernel Spectral Clustering (KSC)
[4] consists in using a Least-Squares Support Vector Machine (LS-SVM) as a
clustering technique. For further statements, consider the notation described in
Table 1.

Given a set of N data points X = {x}Ni=1, being xi ∈ R
d the i-th data

point, and X ∈ R
N×d the data matrix, it is possible to assume a latent variable

E ∈ R
N×ne as E = ΦW + 1N ⊗ b� as a model for the projections with Φ =(

φ(x1)�, . . . ,φ(xN )�)�
, Φ ∈ R

N×dh being the high dimensional representation
of the input data such that φ(·) is the function that maps data from the original
dimension to a higher one dh, i.e., φ(·) : Rd → R

dh ; meanwhile, the weighting
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Table 1. Mathematical notation

Notation Description

A� Transpose of the vector or matrix A

In n-dimensional identity matrix

1n n-dimensional ones vector

φ(·) Feature mapping function

K(·, ·) Kernel function

Ω = [K(xi, xj)] Kernel matrix

⊗ Kronecker product

tr(·) Trace operator

sgn(·) Sign function

◦ Hadammard product

factor matrix is defined by W = (w(1), · · · ,w(ne)), W ∈ R
dh×ne ; and b =

[b1, . . . , bne
] the vector that contains the bias terms, b ∈ R

ne with ne as the
number of considered support vectors.

Then, following a LS-SVM [4] formulation, the primal formulation of KSC
optimization problem can be expressed in matrix terms [9], as follows:

min
E ,W ,b

1
2N

tr(E�V EΓ ) − 1
2

tr(W �W ); s.t. E = ΦW + 1N ⊗ b� (1)

Being Γ = Diag([γ1, . . . , γne
]) the diagonal matrix composed by the regulariza-

tion terms. For solving KSC problem, it is necessary to form the corresponding
Lagrangian of previous problem, as follows:

L(E, W , Γ , A) =
1

2N
tr(E�V E) − 1

2
tr(W �W ) − tr(A�(E − ΦW − 1N ⊗ b�))

with A ∈ R
N×ne as the matrix formed by the Lagrange multiplier vectors such

that A = [α(1), · · · α(ne)], where α(l) ∈ R
N denotes the l-th vector of Lagrange

multipliers.
Consequently, we define the Karush-Kuhn-Tucker (KKT) conditions by solv-

ing the partial derivatives on L(E,W ,Γ ,A). Then, the optimization problem
defined in the Eq. (1) becomes a dual problem: AΛ = V HΦΦ�A, by elimi-
nating the primal variables, where Λ = Diag(λ1, . . . , λne

) is a diagonal matrix
formed by the eigenvalues λl = N/γl; H ∈ R

N×N is the centering matrix define
as

H = IN − 1/(1�
NV 1N )1N1�

NV . (2)

Additionally, in order to satisfying the condition b�1N = 0 resulting from
KKT conditions, the bias vector b can be chosen as a centering vector (i.e. with
zero mean) as follows:

bl = −1/(1�
NV 1N )1�

NV Ωα(l). (3)
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Moreover, the kernel matrix Ω = [Ωij ] = K(xi,xj), i, j ∈ [N ], is created
applying the kernel trick Ω ∈ R

N×N with Ω = ΦΦ�. Likewise, the matrix A
turns into the eigenvectors, resulting in a set of projections calculated by means
of the following formula:

E = ΩA + 1N ⊗ b� (4)

Considering that the kernel matrix is mathematically equivalent to the sim-
ilarity matrix used in conventional graph-based clustering methods, and consid-
ering V = D−1 with D = Diag(Ω1N ), D ∈ R

N×N begin the degree matrix;
thus, it is possible to infer that the K − 1 eigenvectors composed by the largest
eigenvalues are cluster indicators and therefore, ne = K − 1 [10]. Afterward, the
eigenvectors can be codified based on that both each cluster has a single and
unique coordinate system in the K − 1-dimensional eigenspace; and two points,
of the same orthant in the corresponding eigenspace, belong to the same cluster
[10]. Therefore, we obtain the code book

Ẽ = sgn(E), (5)

by binaryzing the rows of the projection matrix E (using the the sign function
sgn(·)), and therefore its corresponding rows become codewords enabling the
the formation of the holding-similar-samples clusters according to the minimal
Hamming distance. Following the pseudo-code (Algorithm 1) to perform KSC is
shown.

Algorithm 1. Kernel spectral clustering: [A,Λ, Ẽ] = KSC(X,K(·, ·),K)

1: Input: K, X , K(·, ·)
2: Form the kernel matrix Ω such that Ωij = K(yi, xj)
3: Calculate matrix H and b as stated in equations (2) and (3), respectively.
4: Compute the eigendecomposition from the dual the problem: AΛ = V HΩA
5: Determine E through E = ΩA + 1N ⊗ b�

6: Form the training codebook by binarizing ˜E = sgn(E)

7: Output: A,Λ, ˜E

3 Time-Varying Data Analysis via KSC

3.1 KSC-Based Tracking

Following the work done by Wolf and Shashua [11], which introduces a function
regarding a non-negative matrix for a relevance analysis, along with the devel-
opments presented in [6], we build an optimization problem for obtaining the
ranking values for samples instead of features. Focusing on the task of interest, we
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define the non-negative matrix as Ω and the data matrix X is formed taking each
row as a frame, i.e., xi represents the coordinates vectors of the i-th frame. More
specifically, by considering a sequence of Nf , denoted as {X (0), . . . ,X (Nf−1)},
the whole (frame) data matrix will be then X = (x�

1 , . . . ,x�
Nf

)�, such that

xt = vec(X (t)), where t ∈ {1, . . . , Nf} and vec(·) is a vectorization operator.
Thus, the Eq. (4) becomes an energy maximization problem, stated as follows:

max
U

tr(U�Ω�ΩU); s.t. U�U = Ine
. (6)

The orthonormal rotation matrix U ∈ R
N×ne is formulated such that the

linear transformation of kernel matrix is in the form Z = ΩU ,Z ∈ R
N×ne .

Following the procedure described in Sect. 2, it is possible to formulate that
tr(U�Ω�ΩU) = tr(Λ2) and therefore a suitable solution for the problem is
U = A. So, the ranking vector η ∈ R

N , as explained in [6], can be expressed as
a linear combination of vectors α(l):

η =
ne∑

l=1

λlα
(l) ◦ α(l). (7)

Subsequently, the ranking factor ηi can be seen as a single value representing a
unique frame in a sequence. In such vein, η becomes a tracking vector.

3.2 Encoded Tracking Vector

In this section we describe the proposed encoding approach for comparing frame
tracking given by the original approach. This encoding approach is inspired by
the procedure explained in [12].

As discussed in [5,13], given the KKT conditions applied to the dual for-
mulation of the KSC problem, the clusters can directly be recognized, as the
geometrical location of projected data points E in every single orthant repre-
sents an unique cluster. In other words, clusters can be encoded with binary
indicators as expressed in Eq. (5). Consequently, we can obtain crisp values from
the cluster indicators as the rows ẽi (∀i, i ∈ {1, . . . , N}) of matrix Ẽ can be
directly converted from binary to decimal numbers. Nonetheless, here it is pre-
ferred to constraint such a conversion as the maximum resulting number will be
the expected number of clusters. Then, binary codes are converted into decimal
numbers upon order of appearing, from 1 to K to reach the encoded tracking
vector η̃ ∈ R

d.
So, to exemplify our encoding approach, let us consider the following example

with ne = 4:

E =

⎛

⎜
⎜
⎜
⎜
⎝

2.7 2.1 −0.4 4.1
4.3 2.5 −0.5 −1.3
2.3 1.5 −0.5 4.3
1.3 −1.5 −0.5 2.3
1.3 2.5 −0.5 4.3

⎞

⎟
⎟
⎟
⎟
⎠

,
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yielding an encoded matrix in the form:

Ẽ =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 −1 1
1 1 −1 −1
1 1 −1 1
1 −1 −1 1
1 1 −1 1

⎞

⎟
⎟
⎟
⎟
⎠

, (8)

and therefore its η̃ will correspondingly be given by:

η̃ =

⎛

⎜
⎜
⎜
⎜
⎝

1
1
2
3
1

⎞

⎟
⎟
⎟
⎟
⎠

.

3.3 KSC-Based Tracking Algorithm

The steps for calculating the proposed KSC-based tracking (KSCT) vectors are
summarized in Algorithm 2.

Algorithm 2. KSCT: [η, η̃] = KSCT
({X(0), . . . ,X(Nf−1)},K

)

Input: Number of clusters K, a frame sequence {X (1), . . . ,X (Nf )}, a kernel function
K(·, ·)
1. Form the frame matrix X = [x�

1 , . . . , x�
Nf

] such that xt = vec(X (t))
2. Apply KSC over X with K to get the eigenvalues Λ = Diag(λ1, . . . , λñe) and
eigenvectors

A = [α(1), · · · , α(ñe)]: [A,Λ, ˜E] = KSC(X , K(·, ·), K)
3. Compute η =

∑ñe
�=1 λ�α

(�) ◦ α(�) with ñe = K − 1
4. Normalize η as η ← η/ max |η|
5. Obtain η̃ by encoding into decimal numbers ˜E

Output: Tracking vectors η, η̃

4 Experimental Setup

4.1 Database

For experiments, we use an object of the well-known database COIL 20 intro-
duced in [7], which is an image bank consisting of 72 gray-level images of 20
different objects placed at different angles (72) - rotated at every 5 degrees.
Specifically, we pick the object # 4 as shown in Fig. 1. The 72 images (one per
angle/pose) I are in size 128 × 128 pixels, which are firstly re-scaled at a 50 %,
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yielding then final RGB images as X (t) ∈ R
64×64, being t ∈ {0, . . . , 71}. Sub-

sequently, a data matrix is formed by vectoryzing the RGB images. Therefore,
the number of data points is N = 64 × 64 × 3 = 12288, as well as the number of
variables is d = 72 (being the same number as Nf ), which means that the data
matrix to be clustered is X ∈ R

12288×72.

(a) Frame 0 (b) Frame 9 (c) Frame 18 (d) Frame 27 (e) Frame 36

(f) Frame 45 (g) Frame 54 (h) Frame 59 (i) Frame 63 (j) Frame 71

Fig. 1. Some instances of object # 4 frames from COIL 20 database.

4.2 Clustering and Kernel Settings

The number of clusters is set to be K = 4. The considered kernel function is the
conventional Gaussian kernel defined as: Ωij = exp(−‖xi − xj‖22/(2σ2), where
‖ · ‖ denotes the Euclidean norm and the scale parameter σ is set empirically as
30.

5 Results and Discussion

For analyzing the sequence of frames arranged into matrix X, we first apply
KSC. Then, with the KSC outcomes, the vector η is calculated using the Eq. (7).
From Fig. 2, we can observe the process of the dynamic behaviour captured by
the KSC-based tracking, as follows: Fig. 2(a) and (b) shows the plotting of the
original tracking vector η and the encoded version η̃, respectively. In Fig. 2(c),
the reference labelling vector is shown, which is obtained directly from the values
of η̃.
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Fig. 2. Original and encoded tracking vector plotting. It is depicted the plotting of
vectors η and η̃ along the 72 frames for Object # 4 from COIL 20 database in Figs. 2(a)
and (b), respectively. Figure 2(c) is the overlapped representation of the vectors η
and η̃, while the area under the curve is colored to highlight the motion-stage-based
labelling regarding η̃.

From the plotting of η, it can be seen that its shape is multimodal-like. By
comparing vector η̃ with η, it can be readily noticed that each mode of the
η plotting corresponds to a different cluster, i.e. a motion stage in the con-
text of video analysis. Such correspondence can be attributed to the fact that
the eigenvectors α(l) point out the direction where samples exhibit the most
variability measured in term of the generalized inner product (Φ�Φ). In this
connection, kernel functions take place and enable the estimation of the inner of
high-dimensional representation spaces, wherein resulting clusters are assumed
to be linearly separable. The direct connection between the tracking vector η
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Fig. 3. Object #4 tracking original frames (2, 9, 18, 27 and 36) and tracking vectors.

and the partition of natural movements from Object #4 can be plainly appreci-
ated in Figs. 3 and 4, where the top row shows representative frames per cluster
while middle row and bottom row depicts the corresponding evolution of the η
and η̃ curve, respectively.

As noticed, each mode between inflections forms a concave curve in the plot-
ting, which means that another natural cluster within the sequence has appeared.
Such cluster splitting can even be determined by simple inspection. Besides, the
encoding vector allows then for validating the premise that vector η is able
to divide the sequence of frames into natural motion stages (clusters), when
the clustering settings are appropriate. An instance of the motion segmentation
effect is depicted in the video available at: https://sdas-group.com/gallery/.

https://sdas-group.com/gallery/
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Fig. 4. Object #4 tracking original frames (45, 54, 59, 63 and 71) and tracking vectors.

6 Conclusions

The dynamic point of view of the greatly wide field of data analysis entails a
complex and difficult issue to tackle, since the input data vary along the time.
Even more, the intrinsic dynamics - involved during the movement itself - adds
more complexity to the subsequent data processing task. On this regard, one of
the challenging open issues is the automatic motion segmentation - which can
be readily evaluated over rotating objects. In this sense, we have proved that
KSC method represents a powerful, suitable tool.

In this work, the use of non-supervised approaches is preferred since, in
real-world video applications, an enough amount of labelling is infeasible or
prohibitive. Notwithstanding, the disadvantage of working on rotating objects
analysis within unsupervised settings is that no automatic motion segmentation
can directly be generated by means of a tracking function (here-called tracking
vector). At this point, to overcome this obstacle, we have introduced a clustering-
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indicators-based encoding procedure, so that the quality of the original multi-
modal tracking vector can be measured.
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