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Abstract—In the present paper, the almost periodicity of the
first principal components is studied, with the aim of being able to
use less information in order to obtain acceptable reconstructions
of compressed images. The results of this study show that by
working with the periodic principal components of images under
analysis, it is possible to obtain an additional reduction to that
obtained by using the original principal components. Specifically,
it is shown that if the principal components that are considered
periodic are replaced by their period plus a trend, it can be said
that the reconstruction achieved using these periodic principal
components is very close to the reconstruction achieved using the
original principal components.

I. INTRODUCTION

Principal component analysis (PCA), also known as the
Hotelling transform or Karhunen-Loeve transform, is a statisti-
cal technique that was proposed by Karl Pearson (1901) as part
of factorial analysis; however, its first theoretical development
appeared in 1933 in a paper written by Hotelling [1]–[4].
The complexity of the calculations involved in this technique
delayed its development until the birth of computers, and its
effective use started in the second half of the 20th century.

This technique allows to transform multidimensional data
sets into spaces of lower dimensions, minimizing the loss of
original information. With this procedure there is a new set
of orthogonal axes that are forming low-dimensional vector
subspaces and on which the set of points is projected so that
the variance of these projections is maximum [5]. By having
p variables collected on the units analyzed, all are required to
reproduce the total variability of the system, and sometimes
most of that variability can be found in a small number, k,
of principal components. Its origin lies in the redundancy
that there is many times between different variables. Thus
redundancy is data, not information. For real world images,
the dependence of a pixel with its neighbors is clear, so there
is a dependence on location. The k principal components
can replace the p initial variables, so that the original set of
data, consisting of n measures of p variables, is reduced to n
measures of k principal components [5].

PCA is among the most acclaimed multivariate statistical
techniques and it is used by a wide range of scientific
disciplines [6]. For example, in [7], a method to locate the
optic disk automatically is proposed and PCA is applied to
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candidate regions, which are first determined by clustering the
brightest pixels. This is an example of PCA techniques applied
to object detection. A literature review on the use of PCA for
face recognition, face verification, automatic location of optic
disk in retinal images, and texture analysis is carried out in [8].
Also, in [9] PCA is used in image noise cancellation.

In addition, examples of application of PCA techniques to
object tracking can be found in [10], [11]. The examples of
applications of PCA techniques shown in [12]–[14] are aimed
at traffic control systems. In [15], [16], PCA techniques are
used for three-dimensional reconstruction, and some applica-
tions of PCA techniques to forms recognition can be found
in [17]–[20]. Finally, in [21] PCA techniques are used for
image compression. In that paper, the problem of bandwidth
consumption over multimedia communication is addressed,
and it is made clear that having an effective compression
coding scheme with low bit rates is crucial to enable the
effective and fast transmission of image data over the network.

The present paper is aimed at studying the almost periodic-
ity of the first principal components, with the aim of being able
to use less information in order to obtain acceptable recon-
structions of compressed images. Furthermore, it is shown that
by doing this we can achieve an additional reduction to that
obtained through the use of the original principal components.

II. METHODOLOGY USED FOR IMAGE COMPRESSION

Geometrically, the data are n points of Rp and the principal
components represent an orthogonal transformation, whose
coordinate axes are the axes of the ellipsoid Ep and with
lengths proportional to

√
λ̂i, being λ̂i the eigenvalues of either

the variance/covariance matrix or the correlation matrix. Since
all eigenvectors can be chosen of norm equal to 1, the absolute
value of the i-th component |ŷi| = |êti (x− x̄)| is the length of
the projection of the vector (x−x̄) on the vector êi. Therefore,
the principal components can be seen as a translation of the
origin to the point x̄ and a rotation of the axes until they pass
through the directions with greatest variability.

When there is a high positive correlation between all the
variables and a principal component with all its coordinates of
the same sign, this component can be considered as a weighted
average of all the variables, or the size of the index that
forms that component. The components that have coordinates
of different sign oppose a subset of variables against another,
being a weighted average of two groups of variables.

In this paper, a set of six gray images (known as Barbara,
Fig. 1; Boats, Fig. 2; Goldhill, Fig. 3; Lena, Fig. 4; Mandrill,
Fig. 5, and Peppers, Fig. 6) will be considered, which consists
of images that have been widely used in the literature on image
processing. Here, the gray scale versions of size 512×512 have
been taken into account.

Given an image of those considered, we partition the
image (1) and subdivide it into non-overlapping cells of size
2n × 2n = k2, Aij , with what we obtain 29−n · 29−n = h2

blocks, and each of them will be a vector of observations.

Fig. 1. Barbara.

Fig. 2. Boats.

Fig. 3. Goldhill.
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Fig. 4. Lena.

Fig. 5. Mandrill.

Fig. 6. Peppers.

Image =

A1,1 . . . A1,h

...
. . .

...
Ah,1 . . . Ah,h

 (1)

Now, each matrix Aij is stored in a vector of dimension k2,
x, which contains the elements of the matrix by rows, that is
to say x = [ai,1, . . . , ai,k, ai+1, 1, . . . , ai+1, k, . . . , ai+k, k]. In
this way we have the observations {x` ∈ Rk2 | ` = 1, . . . , h2},
which we group in the observations matrix x = (xij) ∈
Mh2, j2(R). Then, we find the k2 pairs of eigenvalues and
eigenvectors, (λ̂i, êi), with êi, and order them according to
the eigenvalues from highest to lowest.

In general, the first eigenvalue is much larger than the
rest, so that the first principal component fully dominates the
total variability. Therefore, the k2 principal components ŷj =
êtj x = ê1,j x1 + . . . + êk2,j xp, with j = 1, . . . , p, have been
built and consequently we have an orthonormal basis, B′ =
{ê1, . . . , êk2}, of Rk2

. Each vector êj = [ê1,j , . . . , êk2,j ]
t is

grouped by rows in an Mk, k matrix (2).

Êj =

 ê1,j . . . êk,j
...

. . .
...

êk2−k+1,j . . . êk2,j

 (2)

Given a vector v that with respect to the canonical base
has coordinates (x1, . . . , xk2) and with respect to the base B′

its coordinates are (y1, . . . , yk2), the relation between these
coordinates is (x1, . . . , xk2)t = CP(y1, . . . , yk2)t. Also, since
the matrix CP is orthogonal, it has to be (y1, . . . , yk2) =
(x1, . . . , xk2)CP. So, the coordinates of the h2 vectors that
form the observation matrix have as coordinates, with respect
to the new base, the rows of the matrix with dimension h2×k2
given by y = x ·CP.

If we keep all the B′ vectors, we can perfectly reconstruct
our data matrix, because y = x ·CP implies x = y ·CP−1 =
y ·CPt.

To compress the image, we are left with the first vectors of
the base B′, that is to say that we still have vectors each of
them with k2 components, but we have only h2 vectors, with
h < k. If we stay with M components, M < k2, we define
the matrix (3) of order k2×k2, which in the upper left corner
has a block formed by the identity matrix of order M and the
rest of the elements are zero.

TM =

[
IM×M 0M×(k2−M)

0(k2−M)×M 0(k2−M)×(k2−M)

]
(3)

Therefore, the matrix yM = y · TM = x · CP · TM has
the same dimension as the observations matrix h2 × k2, but
where the last (k2−M) columns are all zero, that is, we have
reduced the dimension h2 × k2 to h2 ×M and the rest has
been filled with zeros.

To reconstruct the compressed image, the inverse operations
are carried out, that is to say, each row of yM is reordered in
a k× k matrix, so the i-th row of yM is transformed into the
matrix given by (4), with i = 1, . . . , h2.
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Bi =


bi,1 · · · bi,k
bi, k+1 · · · bi,2·k

...
. . .

...
bi, k2−k+1 · · · bi, k2

 (4)

Now, we build the compressed image matrix (5) of dimen-
sion 512 × 512 formed by k2 × k2 blocks, each block being
a Bi matrix.

Imagecomp =


B1 . . . Bk2

Bk2+1 . . . B2·k2

...
. . .

...
Bh2−k2+1 . . . Bh2

 (5)

In order to correctly predict the quality that is really
appreciated by the observer, the method we will use is the peak
signal-to-noise ratio (PSNR). The PSNR measure evaluates the
quality in terms of deviations between the processed image
and the original, that is, an error value. If the pixels of the
original image are {xn, with n = 1, . . . , N}, with N being
the number of rows by the number columns of the image, the
pixels of the reconstruction are {yn, with n = 1, . . . , N}, the
error is the difference {rn = xn − yn, with n = 1, . . . , N},
and we consider the mean squared error (MSE) of (rn), then

MSE =
1

N

∑N
i=1 r

2
n.

A measure of the quality of the image is the rate between the
variance of the signal and the variance of the error (measured
in dB), when the signal is a discrete variable the variability in
the original image is replaced by the squared of the maximum
value of the signal, obtaining the PSNR. In the case of 8-bit
images, the PSNR of the reconstruction is given by (6).

PSNR = 10 log10

(
(28 − 1)2

MSE

)
= 10 log10

(
2552

MSE

)
(6)

We have already mentioned, in previous paragraphs, that
the first eigenvalue is much larger than the rest, and that
the first principal component completely dominates the total
variability. Thus, the k2 principal components ŷj = êtj x =
ê1,j x1+ . . .+ êk2,j xp, with j = 1, . . . , p, have been built, and
therefore we have an orthonormal basis, B′ = {ê1, . . . , êk2},
of R64. Each vector êj = [ê1,j , . . . , ê64,j ]

t is grouped by rows
in an M8, 8 matrix (see (2)).

In practice, the periodic behavior of the coordinates, in
the canonical basis, of the vectors of the base B′ can be
observed. The explanation is that there is a dependency of a
pixel in relation to its neighbors and that when we have k×k
submatrices, which we have stored by rows in a vector, the
values of one pixel of that submatrix are quite similar to those
of another pixel that is separated of this by k elements of the
vector that we have formed. In Figs. 7, 8, 9, 10, 11, and 12 we
have included the first principal component of the considered
images. For the images of Figs. 1, 2 and 3, 24× 24 cells have
been considered; and for images of Figs. 4, 5, and 6, 25 × 25

cells been considered.

Fig. 7. Coefficients of the first principal component: Barbara.

Fig. 8. Coefficients of the first principal component: Boats.

Fig. 9. Coefficients of the first principal component: Goldhill.

Fig. 10. Coefficients of the first principal component: Lena.
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Fig. 11. Coefficients of the first principal component: Mandrill.

Fig. 12. Coefficients of the first principal component: Peppers.

The traditional methodology for the study of time series [22]
is based on decomposing the series into several parts: trend,
periodic variation, and other irregular fluctuations. In this pa-
per, we applied the traditional methodology to the coefficients
of the first principal components and analyzed the trend. Later,
we analyzed the periodic fluctuations of the variable, in periods
delimited by the size of the blocks in which we divided the
images. It is important to point out that, after extracting the
trend and cyclical variations from the series, we have a series
of residual values, which may or may not be completely
random.

Once the trend was eliminated, we analyzed the dependence
between the observations. To analyze the seasonality of a se-
ries, we introduced the autocorrelation function. This function,
for the k ∈ N value, measures the linear relationship between
the values of the series spaced in k temporal units. If there is
seasonality, the values separated from each other by intervals
equal to the seasonal period must be correlated in some way.
That is, the coefficient of autocorrelation for a delay equal to
the seasonal period must be significantly different from 0.

Also, related to the autocorrelation function, we find the
partial autocorrelation function. With the partial autocorrela-
tion coefficient of order k, the correlation between the pair of
values separated by that distance is calculated but eliminating
the effect due to the correlation produced by the observations
between them. Again, in this case, the presence of a value
significantly different from zero will be indicating the probable
presence of a seasonality factor for that delay value.

As can be seen in Figs. 7, 8, 9, 10, 11, and 12, where

the images were decomposed in 2h × 2h squares, with h =
2 and 3, all the figures seemed to have some component of
period h. This suggested that there may be some relationship
with the shape of the chosen blocks and, given that when we
considered each of the 22h component vectors, the first 2h

pixels were adjacent with the next 2h and so on up to 2h

times, most of the vectors were close to be periodic of period
2h. Since the first principal components collect a large part of
the characteristics of the vectors, it is plausible that they also
reflect the periodicity of the vectors.

In this paper, in order to replace the coefficients of the
first principal components, we eliminated the trend using low-
degree polynomials, then analyzed the periodicity and replaced
the k × k dimension vector with another whose components
were periodic. After that, we added the trend to the periodic
table and so we had already replaced the first components
with their periodic versions. Finally, to evaluate the quality of
the images reconstructed with the first periodic components,
we found the value of PSNR and compared this value with
the value of the PSNR when applying it to the principal
components originally obtained.

III. RESULTS

To illustrate the procedure and see the results, we will
consider the image shown in Fig. 1. Next, we make a partition
of this image and subdivide it into non-overlapping cells of
size 8×8, Aij . With that we obtain 26 ·26 = 4096 blocks and
each of these blocks will be a vector of observations. This
matrix is given by (7). Later, we represent the coordinates
of the first vectors of the base B′, obtained as blocks of
dimension 23×23 and are in R64. In Figs. 13, 14, 15, and 16,
the coordinates of the first four principal components are
shown with respect to the canonical basis. Although in fact
the first eigenvalue is greater than the rest, what is appreciated
is the possibility that these coefficients have periodic features
by eliminating the possible trends that they have. For the first
and fourth principal components, the trend is of the second
degree, and for the second and third principal components, the
trend is linear. There is a seasonality of delay 23 in the first
four principal components, indicating that after eliminating
the trend the coefficients of the principal components are
approximately 23−periodic.

Image64 =

A1,1 . . . A1,64

...
. . .

...
A64,1 . . . A64,64

 (7)

Figures 17, 18, 19, and 20 show eight repeated values
periodically and added the respective trend. With the peri-
odicity 2k = 23 and the considered trend, a great similarity
between these principal components and the original principal
components is obtained. Note that the original principal com-
ponents and the principal components modified by periodicity
practically overlap. This results in that the differences between
the reconstructed images with the new vectors have to pick up
the majority of the variability.
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Fig. 13. Coefficients of the first principal component of Fig. 1 with respect
to the canonical basis.

Fig. 14. Coefficients of second principal component of Fig. 1 with respect
to the canonical basis.

Fig. 15. Coefficients of the third principal component of Fig. 1 with respect
to the canonical basis.

Fig. 16. Coefficients of the fourth principal component of Fig. 1 with respect
to the canonical basis.

Fig. 17. Approximation by periodicity of Fig. 13

Fig. 18. Approximation by periodicity of Fig. 14

Fig. 19. Approximation by periodicity of Fig. 15

Fig. 20. Approximation by periodicity of Fig. 16
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Fig. 21. PSNR of the first four original principal components and the first
four principal components modified by periodicity.

Fig. 22. Approximation of the reconstructed image with 6 original principal
components.

To analyze the quality of the reconstructions in
Figs. 17, 18, 19, and 20, we have represented the value of the
PSNR of the reconstructions of the image versus the number
of principal components used for the reconstruction, and the
PSNR of the reconstructions made with principal components
modified by periodicity (see Fig. 21). Figures 22 and 23)
show the reconstructions of Fig.1 with six original principal
components and with the first six principal components
altered by periodicity, respectively.

IV. CONCLUSIONS

Taking into account the results obtained in this paper, we
can conclude that taking the principal components considered
periodic and replacing them with their period plus a trend,
we can say that these principal components are quite close
to the reconstruction of the original image obtained using the
original principal components. Therefore, vectors of length k2

can be replaced by other vectors of length k and, consequently,
the possibility of achieving improvements in the storage,
processing, and transmission of the image is increased.

Fig. 23. Approximation of the reconstructed image with 6 periodic principal
components.
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